Iván Martí-Vidal, de la Universidad de Valencia, estuvo en el equipo de los primeros que le vieron la cara, por primera vez en la historia, a un agujero negro, uno de los objetos más misteriosos del cosmos 

Lorena Sánchez, The Conversation

En el corazón de la Vía Láctea, nuestra galaxia, palpita un agujero negro supermasivo, Sagitario A*. Ya nadie lo discute. El THS, el Telescopio Horizonte de Sucesos, ha logrado fotografiarlo.

“Cuando veo las imágenes que el THS ha obtenido de estos agujeros negros, siento más bien vértigo. Al fin y al cabo, en esas regiones existe una superficie que separa causalmente a nuestro Universo de lo que se oculta en su interior…”. Así describe Iván-Martí Vidal el significado de verle la cara al objeto más extravagante del cosmos, un agujero negro supermasivo.

Iván Martí-Vidal, investigador de la Universidad de Valencia, forma parte del equipo científico que ha obtenido la imagen. Le entrevistamos en un día de fiesta mayor para la astrofísica mundial.

Cuando lograron la primera imagen de un agujero negro, Messier 87, Heino Falcke, de la Universidad de Radboud en Nijmegen, descubrió así lo que sintió cuando lograron darle forma: “Se siente como mirar a las puertas del infierno”. ¿Cómo lo describiría usted?

Aunque le tengo aprecio al profesor Falcke, mi visión es muy diferente a la suya en muchos aspectos. Para empezar, soy ateo, y mi interpretación particular de las maravillas de la Astronomía no está sesgada (o no pretende estarlo) por ningún misticismo antropomórfico o antropocéntrico, como sí parece estarlo la visión de Falcke.

«En esas regiones existe una superficie que separa causalmente a nuestro Universo de lo que se oculta en su interior; una superficie donde el tiempo lleva congelado desde el remoto pasado cósmico».

Cuando veo las imágenes que el THS ha obtenido de estos agujeros negros, siento más bien vértigo. Al fin y al cabo, en esas regiones existe una superficie que separa causalmente a nuestro Universo de lo que se oculta en su interior; una superficie donde el tiempo lleva congelado desde el remoto pasado cósmico; una superficie donde el tiempo y el espacio, de hecho, se mezclan; se confunden de formas que nuestros pobres cerebros no están preparados para imaginar en toda su magnitud, aunque sí las comprendamos en forma de ecuaciones, gracias a la formulación de la Relatividad General.

Este es M87, el primer agujero negro del que se tomó una fotografía

Este es M87, el primer agujero negro del que se tomó una fotografía

¿Podría describirme lo que estamos viendo en la imagen de Sagitario A*?

«En esa región, la gravedad producida por el agujero negro es tan fuerte que los rayos de luz que allí se encuentran se ven obligados a orbitar a su alrededor. Imagínese: ¡órbitas hechas de rayos de luz!»

La imagen de SgrA* muestra un anillo de luz, que se corresponde con la existencia de lo que llamamos una “fotonesfera”. En esa región, la gravedad producida por el agujero negro es tan fuerte que los rayos de luz que allí se encuentran se ven obligados a orbitar a su alrededor. Imagínese: ¡órbitas hechas de rayos de luz!

El tamaño de ese anillo fotonesférico es, además, justo el que predice la Teoría de la Relatividad General, si usamos la masa de SgrA* que fue ajustada a partir de las órbitas de estrellas cercanas (un estudio que les valió a Andrea Ghez y Reinhard Genzel el premio Nobel de Física de 2020, compartido con Roger Penrose). Esto confirma, por enésima vez, que la Relatividad de Einstein funciona con una finura tremenda. Los agujeros negros de M87* y SgrA*, aún teniendo masas muy diferentes (el primero es 1 500 veces más masivo que el segundo), obedecen a la Relatividad General con precisión y exactitud. Hoy, Einstein se ha marcado un nuevo tanto.

¿Qué sensación produce investigar agujeros negros? Si Einstein levantara la cabeza…

Si Einstein levantara la cabeza, igual volvería a morirse del gusto cuando le explicaran que, nada menos que a principios del siglo XXI, la tecnología humana ya ha avanzado lo suficiente para permitir la detección de ondas gravitacionales y la obtención de imágenes de agujeros negros.

El propio Einstein llegó a plantear que los agujeros negros no deberían existir en el Universo (siendo por lo tanto una mera curiosidad matemática de sus ecuaciones). También aventuró que la humanidad jamás podría llegar a detectar las ondas gravitacionales que su teoría predecía, dada la ínfima señal que esas ondas imprimen en los detectores. No obstante, como hemos visto, los humanos hemos conseguido ambas cosas en un tiempo récord: básicamente, poco más de un siglo después de que Einstein plasmara sus ecuaciones en una afortunada pizarra por primera vez.

«Me entristece mucho es que el profesor Stephen Hawking no haya podido vivir lo suficiente para ver la imagen de M87*»

Hablando de “los grandes”, algo que me entristece mucho es que el profesor Stephen Hawking no haya podido vivir lo suficiente para ver la imagen de M87* que publicamos en 2019. No puedo imaginar lo que habría sentido Hawking al mirar “cara a cara” a ese agujero negro. No creo que la palabra “vértigo” pudiera haberlo descrito ni por asomo. Me habría encantado ser partícipe, como miembro del THS, de ese regalo y tributo a la vida del profesor Hawking. Pero no pudo ser.

¿Es cierto que SgrA* se encuentra en estado de “letargo” y que no dispone de la capacidad de los otros, los activos, para convertir la materia en energía?

La “actividad” de un agujero negro se entiende como su capacidad para atraer materia a un ritmo muy alto y producir (eventualmente) “chorros relativistas” muy energéticos, hechos de una parte de esa materia que, en lugar de ser engullida, es expelida a unas velocidades muy cercanas a las de la luz.

Los agujeros negros más “activos” suelen ser también los más lejanos. En Astronomía, mirar más lejos es sinónimo de mirar hacia el pasado (ya que la luz se propaga a una velocidad finita), por lo que una conclusión bastante lógica es que los agujeros negros supermasivos que habitan en el centro de las galaxias fueron (mucho) más activos en el pasado remoto y, con el tiempo, se han ido “apagando”. Hay excepciones, pero son muy pocas.

Nuestro centro galáctico lleva tiempo “desactivado”, en el sentido de que el ritmo al que engulle materia es bajísimo, no dejándole tampoco producir ningún “chorro relativista” que sea suficientemente intenso como para poder detectarlo bien desde la Tierra. Además, es un agujero negro poco masivo (su masa equivale “solamente” a la de unos 4 millones de soles), lo que no le da tanto poder para atrapar y engullir al mismo ritmo que sus hermanos mayores.

«SgrA* es un agujero negro relativamente tranquilo y apagado. De hecho, si estuviera en otra galaxia cercana (en lugar de tenerlo “ahí al lado”), sería tan débil que no lo detectaríamos»

¿Por qué SgrA* es menos luminoso de lo que debiera teniendo en cuenta la cantidad de gas disponible en su entorno?

SgrA* no dispone de tanto gas y polvo como para tener una alta actividad. Básicamente, lo poco que puede engullir se lo proporciona un pequeño disco de acrecimiento y poco más que los vientos de las estrellas cercanas (todas las estrellas van perdiendo masa, en forma de viento, a medida que envejecen). Además de tener tan escaso material para “comer”, SgrA* también es mucho menos eficiente atrayendo dicho material. Su eficiencia es miles de veces menor que la de M87* (el otro agujero negro “fotografiado” con el THS). Todas estas circunstancias juntas hacen de SgrA* un agujero negro relativamente tranquilo y apagado. De hecho, si estuviera en otra galaxia cercana (en lugar de tenerlo “ahí al lado”), sería tan débil que no lo detectaríamos.

¿A qué se deben las fulguraciones que se detectan, esa especie de estrellas fugaces que se producen en su entorno?

La verdad es que aún desconocemos los detalles que hay detrás de la física de esas fulguraciones infrarrojas y de rayos X en SgrA*. Una posibilidad bastante plausible es que estén relacionadas con subidas muy localizadas de la actividad magnética en el disco de acrecimiento (lo que llamaríamos “reconexiones magnéticas”), que calientan mucho el material que hay en esa región. Además, de vez en cuando, SgrA* se encuentra con un pequeño “festín” (algún desafortunado conglomerado de gas y polvo que se acerca demasiado al agujero negro y acaba siendo engullido). Cuando esto ocurre, el material en caída hacia el agujero negro se calienta y también puede emitir fuerte radiación.

El satélite Integral (ESA) descubrió que hace trescientos cincuenta años SgrA* experimentó una etapa de actividad que debió durar una década y que aumentó su emisión casi un millón de veces, inundando de energía en rayos gamma el espacio circundante. ¿Han apreciado un aumento en la actividad del agujero negro?

La emisión de SgrA*, a nivel cualitativo, no ha cambiado demasiado durante las últimas décadas. Sí ha habido algunos episodios remarcables, pero pocos y no demasiado intensos. Podemos decir que, estadísticamente hablando, SgrA* se encuentra en una etapa tranquila.

Hasta ahora, se ha conseguido información sobre las estrellas que lo orbitan, ¿es cierto que alcanzan cinco mil kilómetros por segundo?

Sagitario A* y la órbita de las estrellas que lo circundan

Sagitario A* y la órbita de las estrellas que lo circundan

En efecto. De hecho, las estrellas que describen esas órbitas llegan a acercarse bastante (peligrosamente, diría yo) a SgrA*. Me parece recordar que el acercamiento máximo se produce nada menos que a unas 17 horas-luz.

«Hemos podido “confinar” la masa de SgrA* (equivalente a unos 4 millones de soles)»

No obstante, esas 17 horas-luz no son nada comparado con los poco más de 3 minutos-luz de tamaño de la imagen del HTS. Gracias a la imagen que acabamos de publicar, hemos podido “confinar” la masa de SgrA* (equivalente a unos 4 millones de soles) a un volumen tan pequeño que la única explicación plausible que queda para este astro es la de un agujero negro.

El investigador Iván Martí-Vidal, participante en la obtención de la fotografía de Sagitario A*.

Mi última pregunta es personal: ¿le gustaría vivir mil años más? ¿Lo sabremos todo entonces sobre el Universo?

Cuando pienso en la posibilidad de vivir tanto tiempo, no puedo evitar acordarme de la película de Los Inmortales, con aquella fabulosa banda sonora de Freddie Mercury. Poder presenciar el progreso de la humanidad y ser testigo de los fascinantes descubrimientos que nos esperan es muy tentador, pero no me gustaría experimentar esa aventura habiendo sobrevivido a incontables generaciones de mis seres queridos. Soy científico, y me fascina el avance del conocimiento, pero hay precios que no estaría dispuesto a pagar por ser testigo de ese avance durante los próximos siglos.

Acerca de si podremos saberlo “todo” sobre el Universo, más bien lo dudo. No porque me falte confianza en la capacidad humana, sino porque la metodología científica es incompatible con esa idea de “saberlo todo”.

«Nunca, jamás, podremos estar completamente seguros de que una teoría describa todos y cada uno de los fenómenos naturales»

Es posible que, algún día, tengamos en nuestras manos algo a lo que poder llamar “teoría del todo”, pero nunca, jamás, podremos estar completamente seguros de que esa teoría describe todos y cada uno de los fenómenos naturales. Y aunque así fuera, siempre habría fenómenos en el Universo que (aunque pudieran ser predichos por esa teoría) no habrían sido planteados ni considerados, y estarían esperando a ser descubiertos.

Mi visión personal (y algo optimista) del avance científico para los próximos siglos es que nuestra tecnología nos permitirá resolver los grandes retos a los que ahora se enfrenta nuestra civilización; y nos permitirá enfrentarnos, además, a nuevas preguntas que por ahora ni siquiera podemos formular.The Conversation

Lorena Sánchez, Ciencia y Medio Ambiente, The Conversation

Este artículo fue publicado originalmente en The Conversation. Lea el original.